

Approval body for construction products and types of construction

Bautechnisches Prüfamt

An institution established by the Federal and Laender Governments

European Technical Assessment

ETA-16/0696 of 6 October 2017

English translation prepared by DIBt - Original version in German language

General Part

Technical Assessment Body issuing the European Technical Assessment:	Deutsches Institut für Bautechnik
Trade name of the construction product	S&P - ResEP-16 Epoxy Injection System
Product family to which the construction product belongs	Bonded anchor for use in concrete
Manufacturer	S&P Clever Reinforcement Company AG Seewernstrasse 127 6423 SEEWEN SCHWEIZ
Manufacturing plant	Simpson Strong-Tie® Manufacturing Facilities
This European Technical Assessment contains	21 pages including 3 annexes which form an integral part of this assessment
This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of	ETAG 001 Part 5: "Bonded anchors", April 2013, used as EAD according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.
This version replaces	ETA-16/0696 issued on 21 October 2016

Deutsches Institut für Bautechnik Kolonnenstraße 30 B | 10829 Berlin | GERMANY | Phone: +49 30 78730-0 | Fax: +49 30 78730-320 | Email: dibt@dibt.de | www.dibt.de

European Technical Assessment ETA-16/0696

Page 2 of 21 | 6 October 2017

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction shall be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission in accordance with Article 25(3) of Regulation (EU) No 305/2011.

Page 3 of 21 | 6 October 2017

European Technical Assessment ETA-16/0696 English translation prepared by DIBt

Specific Part

1 Technical description of the product

The S&P – ResEP-16 Epoxy Injection System is a bonded anchor consisting of a cartridge with injection mortar ResEP-16 and a steel element. The steel elements are either

- Threaded rods in the range of M 12 to M 27 or
- Reinforcing bar in the range of φ 12 to φ 25 mm

The steel element is placed into a drilled hole filled with injection mortar and is anchored via the bond between metal part, injection mortar and concrete.

The product description is given in Annex A.

2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

3 Performance of the product and references to the methods used for its assessment

3.1 Mechanical resistance and stability (BWR 1)

Essential characteristic	Performance
Characteristic resistance tension and shear loads	See Annex C 1 to C 4
Displacements under tension and shear loads	See Annex C 5 to C 6

3.2 Safety in case of fire (BWR 2)

Essential characteristic	Performance
Reaction to fire	Anchorages satisfy requirements for Class A1
Resistance to fire	No performance assessed

3.3 Hygiene, health and the environment (BWR 3)

Regarding dangerous substances there may be requirements (e.g. transposed European legislation and national laws, regulations and administrative provisions) applicable to the products falling within the scope of this European Technical Assessment. In order to meet the provisions of Regulation (EU) No 305/2011, these requirements need also to be complied with, when and where they apply.

3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

European Technical Assessment ETA-16/0696

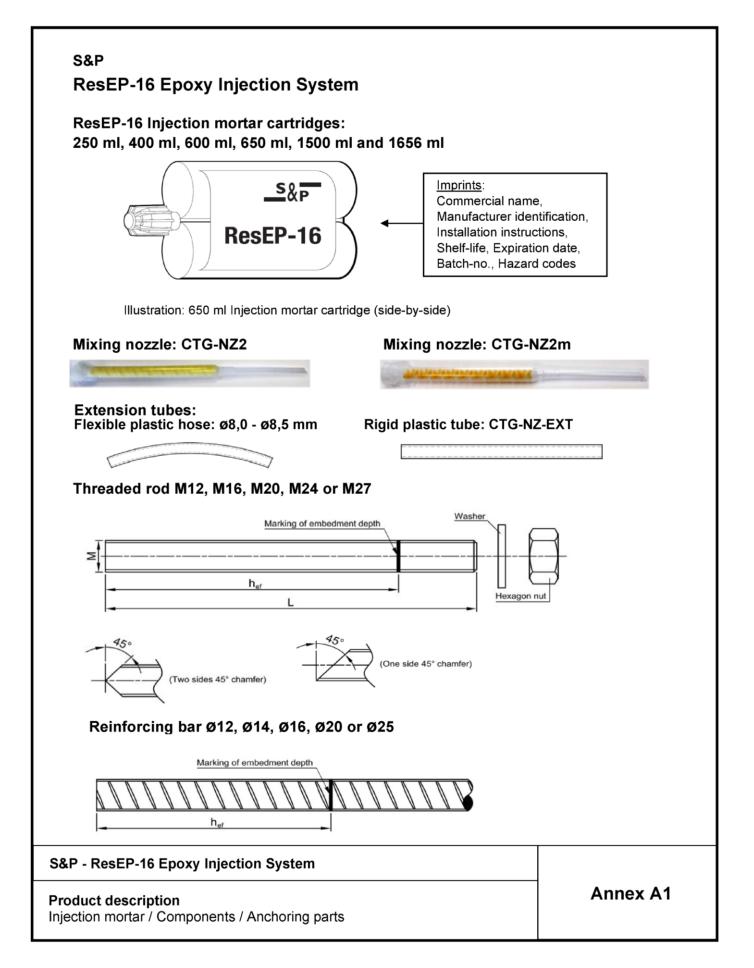
Page 4 of 21 | 6 October 2017

English translation prepared by DIBt

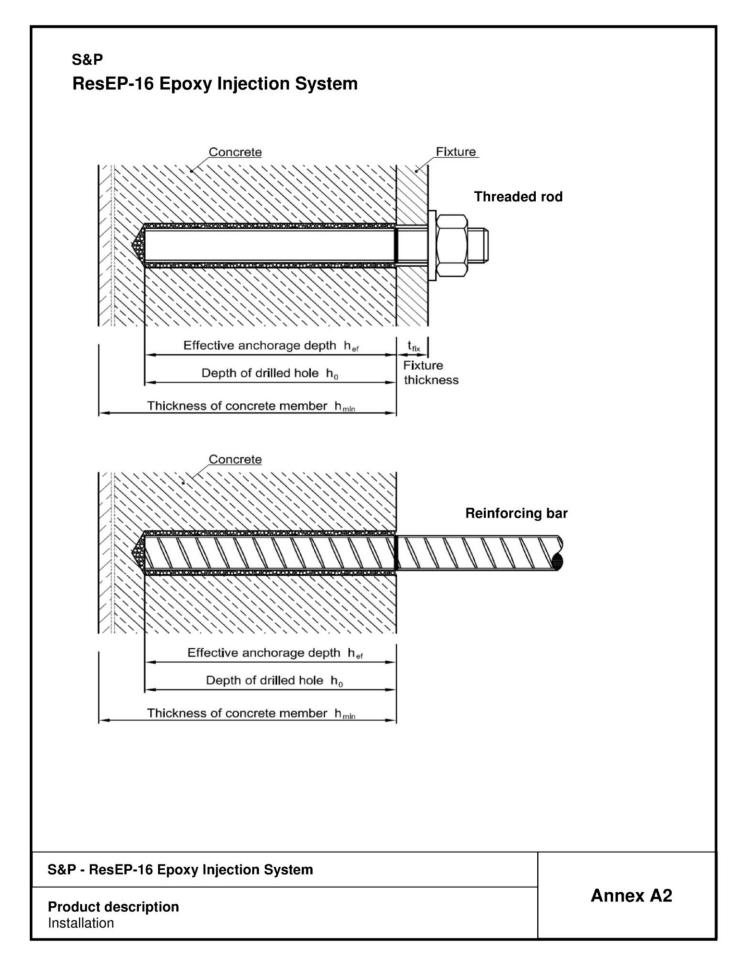
4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

In accordance with guideline for European technical approval ETAG 001, April 2013 used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011 the applicable European legal act is: [96/582/EC].

The system to be applied is: 1


5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable Europan Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited with Deutsches Institut für Bautechnik.


Issued in Berlin on 6 October 2017 by Deutsches Institut für Bautechnik

BD Dipl.-Ing. Andreas Kummerow Head of Department *Beglaubigt:* Baderschneider

S&P **ResEP-16 Epoxy Injection System**

Table A1: Threaded rods

Designation	Material	
•	≥ 5μm according EN ISO 4042:1999, (A2), passivated anised > 40 μm according EN ISO 10684:2004 + AC:2009	
Threaded rod	Carbon steel: Property class 5.8 and 8.8 acc. EN ISO 898-1 A5 ≥ 8% ductile	1:2013;
Washer	Steel: DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:19 7094:2000), DIN 9021:1990-03 (EN ISO 7093-1:2000)	990-05 (EN ISO
Hexagon nut	Steel: DIN 934:1987-10 (EN ISO 4032:2012), property class acc. EN ISO 898-2:2012	s 8
Stainless steel		
Threaded rod	Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4 acc. EN 10088-1:2014 ≤ M24: Property class 70, EN ISO 3506-1;2009; A5 ≥ 8% di > M24: Property class 50, EN ISO 3506-1;2009; A5 ≥ 8% di	uctile
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4439; 1.4571; 1.4578 acc. EN 10088-1:2014	
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012), ≤ M24. Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4362; 1.4401; 1.4404; 1.4439; 1.4571; 1.4 acc. EN 10088-1:2014	4578
Stainless steel - H	igh corrosion resistance steel	
Threaded rod	Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014 ≤ M24: Property class 70,EN ISO 3506-2:2009 ; A5 ≥ 8% di > M24: Property class 50, EN ISO 3506-2:2009 ; A5 ≥ 8% di	
Washer	DIN 125-1:1990-03 (EN ISO 7089:2000), DIN 440:1990-05 DIN 9021:1990-03 (EN ISO 7093-1:2000) Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014	i (EN ISO 7094:2000),
Hexagon nut	DIN 934:1987-10 (EN ISO 4032:2012) ≤ M24: Property class 70, EN ISO 3506-2:2009 > M24: Property class 50 or 70, EN ISO 3506-2:2009 Stainless steel: 1.4529; 1.4565 acc. EN 10088-1:2014	
Commercial threa	ded rods with:	
Inspection certificat	e 3.1 according to EN 10204:2004	
Marking of embedn (This may be done	nent depth by the manufacturer of the rod or by the worker on job site)	
- ResEP-16 Epox	y Injection System	
uct description		Annex A3

Materials - Threaded rod

S&P ResEP-16 Epoxy Injection System

Table A2: Reinforcing bar

Designation	Material
Rebar according EN 1992-1-1:2004 + AC:2010, Annex C	Bars and de-coiled rods class B or C f_{yk} and k according to NDP or NCL of EN 1992-1-1/NA:2013 $f_{uk} = f_{tk} = k \cdot f_{yk}$

S&P - ResEP-16 Epoxy Injection System	S&P	- ResEP-1	6 Epoxv	Injection	System
---------------------------------------	-----	-----------	---------	-----------	--------

Product description Materials - Reinforcement bar Annex A4

Specification of intended use

Anchorages subject to:

- · Static or quasi-static action
- · Cracked concrete
- Non-cracked concrete

Base materials:

- · Reinforced and unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

Temperature Range:

- Installation: ≥ 10°C
- Use conditions: Temperatur Range I: -40° C to +43° C

Temperatur Range II: -40° C to +65° C

(max. long thern temperature +24° C and max. short therm temperature +43° C) (max. long therm temperature +43° C and max. short therm temperature +65° C)

Use conditions (Environmental conditions)

- Structures subject to dry internal conditions (zinc coated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to permanenty damp internal condition, if no particular agressive conditions exist (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal conditions, if other particular aggressive conditions exist (hight corrosion resitant steel).

<u>Note</u>: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor swimming pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used).

Design:

- Anchorages are to be designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings prepared are taking account of the loads to be anchored. The position of the anchor is indicated on the designed drawings (e.g. position of the anchor relative to reinforcement or to supports).
- · Anchorages under static or quasi-static actions are designed in accordance with:
 - EOTA Technical Report TR 029 "Design of Bonded Anchors"; Edition September 2010
 - CEN/TS 1992-4:2009, "Design of Fastenings for use in concrete" part 4-1 and part 4-5,

Installation

- · Use categorie: Dry or wet concrete (must not be installed in flooded holes).
- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site.
- Drilling by hammer-drilling.
- Overhead installation is allowed.

S&P - ResEP-16 Epoxy Injection System

Intended use Specifications

Annex B1

Deutsches Institut für Bautechnik

Table B1: Installation dat	a for thr	eaded	roas				
S&P				Th	readed r	od	
ResEP-16 Epoxy Injecti	on Syste	m	M12	M16	M20	M24	M27
Nom. threaded rod diameter	d	[mm]	12	16	20	24	27
Drill hole diameter	d _o	[mm]	14	18	24	28	30
Effective anotherage depth	h _{ef, min}	[mm]	70	80	90	100	110
Effective anchorage depth	h _{ef, max}	[mm]	240	320	400	480	540
Diameter of clearance hole in the fixture	d _f ≤	[mm]	14	18	22	26	30
Installation torque	T _{inst,max}	[Nm]	40	60	80	100	120
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm		h _{ef} +	· 2d ₀	
Minimum allowable spacing	s _{min}	[mm]	80	100	115	135	155
Minimum allowable edge distance	C _{min}	[mm]	45	60	70	80	90

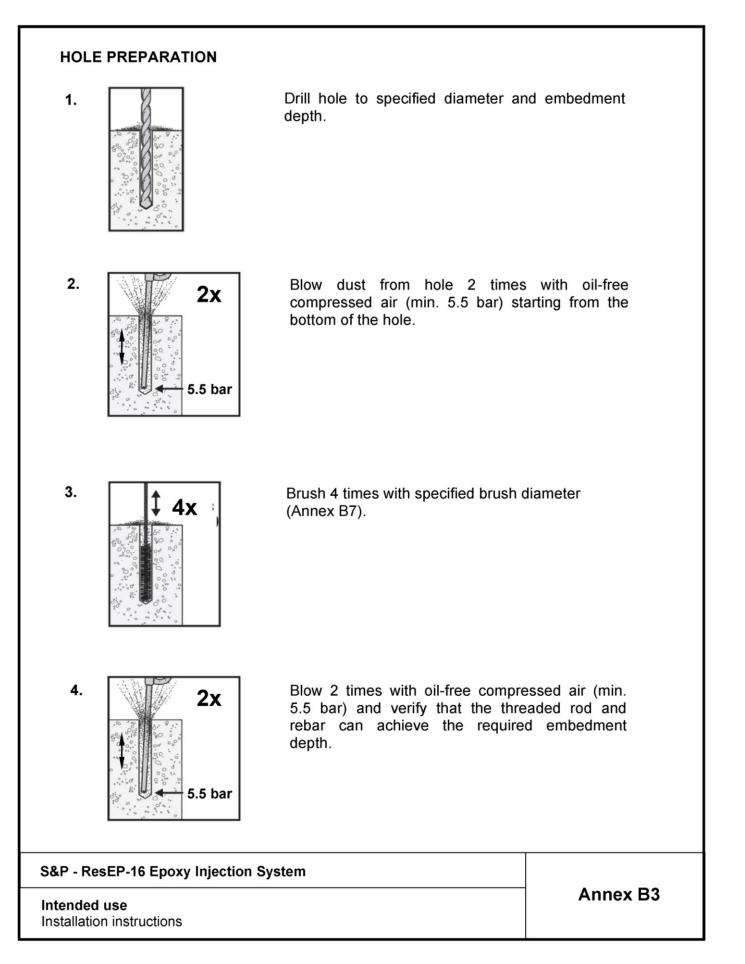
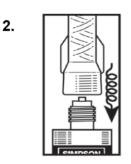
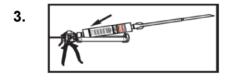

Table B1: Installation data for threaded rods

Table B2: Installation data for reinforcing bar

S&P				Rei	nforcing	bar	
ResEP-16 Epoxy Injection	on Syste	m	Ø12	Ø14	Ø16	Ø20	Ø25
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Drill hole diameter	d _o	[mm]	16	18	20	25	32
Effective anchorage depth	h _{ef, min}	[mm]	70	75	80	90	100
Ellective anchorage depth	h _{ef, max}	[[[]]]	240	280	320	400	500
Minimum thickness of concrete member	h _{min}	[mm]	h _{ef} +30 mm ≥ 100 mm		h _{ef} +	· 2d ₀	
Minimum allowable spacing	s _{min}	[mm]	80	90	100	115	135
Minimum allowable edge distance	C _{min}	[mm]	45	50	60	70	80

Intended use Installation data Annex B2





CARTRIDGE PREPARATION AND HOLE FILLING

1. Check cartridge expiration date. **Do not use expired product.** Product is usable until end of printed expiration month. Open cartridge per package instructions.

Attach proper mixing nozzle supplied by the manufacturer to the cartridge. Do not modify nozzle.

Insert cartridge into the appropriate dispensing tool.

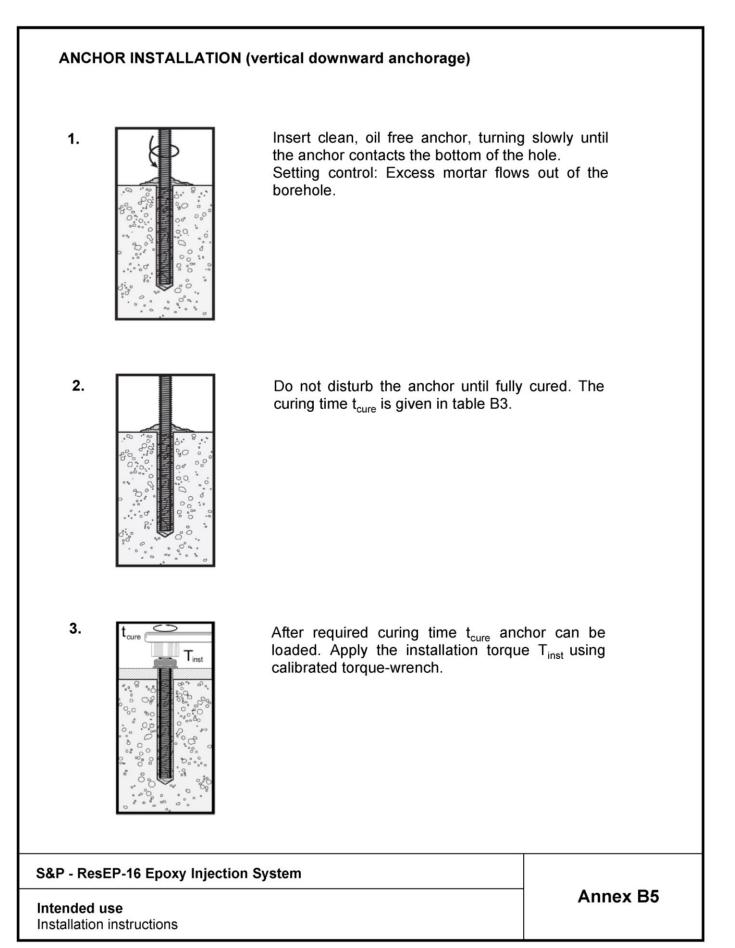
Dispense adhesive to the side until properly mixed, min. 3 strokes (uniform teal color). Discard initial adhesive!

Fill hole approximately 2/3 full, starting from bottom or back of the cleaned drilled hole. Withdraw the nozzle slowly to avoid creating air pockets.

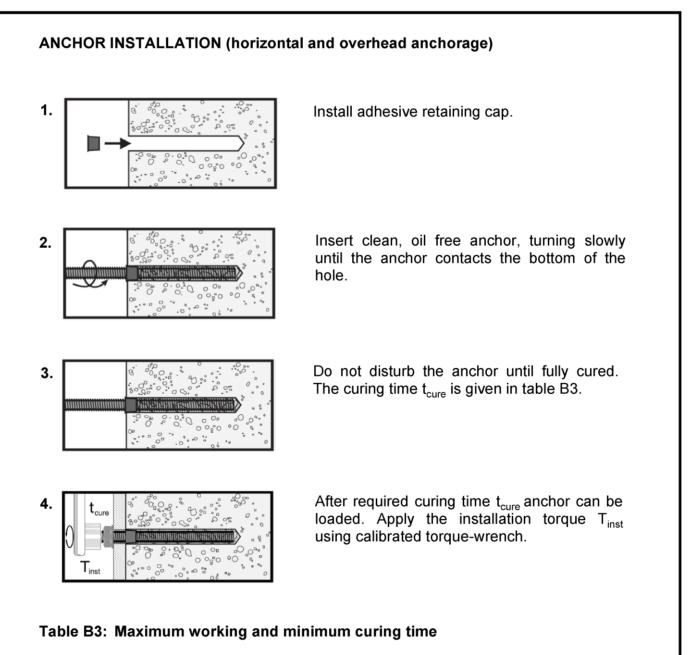
For drilled holes deeper than 150 mm (when $d_0 \le 16$ mm) and drilled holes deeper than 250 mm (when $16 < d_0 \le 30$ mm) an extension tube shall be used. Adhesive retaining caps shall be used in overhead and horizontal installations (Annex B6).

S&P - ResEP-16 Epoxy Injection System

Intended use


4.

5.


Installation instructions

Annex B4

Temperature in the anchorage base T _{anchorage base}	Working time t _{gel}	Curing time ¹⁾ t _{cure}
T _{anchorage base} ≥ 10°	≤ 60 minutes	≥ 72 hours
T _{anchorage base} ≥ 21°	≤ 45 minutes	≥ 24 hours
T _{anchorage base} ≥ 32°	≤ 20 minutes	≥ 24 hours
T _{anchorage base} ≥ 43°	≤ 12 minutes	≥ 24 hours

¹⁾ For installation in wet concrete, the curing times shall be doubled (installation in water-filled drilled holes is not allowed).

S&P - ResEP-16 Epoxy Injection System

Intended use

Installation instructions

Annex B6

S&P

Drill bit

Threaded rod

M20

24

25,4

M24

28

31,8

M27

30

31,8

Cleaning brush		_					
	Length I _b	[mm]	100	100	100	100	100
	Part number		ETB6	ETB6	ETB8	ETB10	ETB10
Table B5: Clea	aning equipm	ent		Rei	nforcing	bar	
ResEP-16 Epoxy	Injection Such	om	Ø12	Ø14	Ø16	Ø20	Ø25
Reserved Epoxy	injection Syst	eill		14	010	Ø20	925
Drill bit	Diameter d_0	[mm]	16	18	20	25	32
	Diameter d _b	[mm]	19,1	19,1	25,4	31,8	41,3
Cleaning brush	Length I _b	[mm]	100	100	100	100	150
	Part number		ETB6	ETB6	ETB8	ETB10	ETB12
				l _b			
Compressed air	cleaning tool						

M12

14

19,1

[mm]

[mm]

M16

18

19,1

Table B4: Cleaning equipment

ResEP-16 Epoxy Injection System

Diameter d₀

Diameter d_b

Intended use Installation equipment

S&P - ResEP-16 Epoxy Injection System

Deutsches Institut für Bautechnik

S&P				Thr	readed	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Steel failure							
Characteristic resistance, Steel grade 5.8	N _{Rk,s}	[kN]	42	79	123	177	230
Characteristic resistance, Steel grade 8.8	N _{Rk,s}	[kN]	67	126	196	282	367
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,5		
Characteristic resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	N _{Rk,s}	[kN]	59	110	172	247	230
Partial safety factor	γ _{Ms} 1)	[-]		1	,87		2,86
Combined pull-out and concrete cone failure							
Nom. threaded rod diameter	d	[mm]	12	16	20	24	27
Characteristic bond resistance in non-cracked of	oncrete C20	/25					
Temperature range I: 43°C / 24°C ²⁾	$\tau_{Rk,ucr}$	[N/mm ²]	17	10	10	9	7
Temperature range II: 65°C / 43°C ²⁾	$\tau_{\text{Rk},\text{ucr}}$	[N/mm ²]	16	9,5	9,5	8,5	6,5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]	10,1				
Characteristic bond resistance in cracked concr	ete C20/25						
Temperature range I: 43°C / 24°C ²⁾	$\tau_{Rk,cr}$	[N/mm ²]	6	4,5	3	3	3
Temperature range II: 65°C / 43°C ²⁾	$\tau_{Rk,cr}$	[N/mm ²]	5,5	4,5	3	3	3
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]	7,2				
Increasing factor for a		C30/37	0 1,0				
Increasing factor for $\tau_{Rk,p}$ in non-cracked and cracked concrete	Ψ_{c}	C40/50					
In non-cracked and cracked concrete		C50/60					
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,4				
Concrete cone failure							
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2		
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]	10,1				
Edge distance	C _{cr,N}	[mm]	1,5x h _{ef}				
Center spacing	S _{cr,N}	[mm]	3x h _{ef}				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Splitting failure							
Edge distance (splitting)	3)4) C _{cr,sp}	[mm]	m] $c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0,4} * \left(3,1-0,7\frac{h}{h_{ef}}\right)$				$7 \frac{h}{h_{ef}}$
Center spacing (splitting)	S _{cr,sp}	[mm]			2x c _{cr,sp})	
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		

S&P - ResEP-16 Epoxy Injection System

Performances

Characteristic values of resistance to tension loads - Threaded rods Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009

Annex C1

Deutsches Institut für Bautechnik

Table C2: Characteristic values of resistance to shear loads.Design method TR 029 or CEN/TS 1992-4-5

S&P				Thr	eaded	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Steel failure without lever arm ³⁾							
Characteristic shear resistance, Steel grade 5.8	V _{Rk,s}	[kN]	21	39	61	88	115
Characteristic shear resistance, Steel grade 8.8	V _{Rk,s}	[kN]	34	63	98	141	184
Partial safety factor	γ _{Ms} ¹⁾	[-]			1,25		
Characteristic shear resistance, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	V _{Rk,s}	[kN]	30	55	86	124	115
Partial safety factor $\gamma_{Ms}^{(1)}$ [-]			1,56			2,38	
Steel failure with lever arm ³⁾							
Characteristic bending moment, Steel grade 5.8	M ⁰ _{Rk,s}	[Nm]	66	166	325	561	832
Characteristic bending moment, Steel grade 8.8	M ⁰ _{Rk,s}	[Nm]	105	266	519	898	1332
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,25				
Characteristic bending moment, Stainless steel A4 and HCR, property class 50 (>M24) and 70 (≤M24)	M ⁰ _{Rk,s}	[Nm]	92	233	454	786	832
Partial safety factor	γ _{Ms} ¹⁾	[-]	1,56 2,		2,38		
Concrete pry-out failure							
Factor in equation (5.7) of TR 029 or in equation (27) to CEN/TS 1992-4-5	k / k ₃	[-]	2				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,0				
Concrete edge failure							
Effective anchor length	l _f	[-]			h _{ef} ²⁾		
Anchor diameter	$d = d_{nom}$	[-]	12	16	20	24	27
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,0		

¹⁾ In absence of other national regulations

²⁾ CEN/TS 1992-4-5: $h_{ef} \le 8 d_{nom}$

³⁾ Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: k_2 =1,0

S&P - ResEP-16 Epoxy Injection System	
Performances	Annex C2
Characteristic values of resistance to shear loads - Threaded rod	
Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009	

S&P				Rein	forcing	g bar	
ResEP-16 Epoxy Injection System			Ø12	Ø14	Ø16	Ø20	Ø25
Steel failure							
Characteristic tension resistance B500B acc. DIN 488-2:2009-08 ⁴⁾	N _{Rk,s}	[kN]	62	85	111	173	270
Partial safety factor	$\gamma_{Ms}^{(1)}$	[-]			1,4		
Combined pull-out and concrete cone failure							
Nom. rebar diameter	d	[mm]	12	14	16	20	25
Characteristic bond resistance in non-cracked co	ncrete C20	/25					
Temperature range I: 43°C / 24°C ²⁾	$ au_{Rk,ucr}$	[N/mm ²]	13,5	8	8	7	5,5
Temperature range II: 65°C / 43°C ²⁾	$\tau_{Rk,ucr}$	[N/mm²]	12,5	7,5	7,5	6,5	5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]			10,1		
Characteristic bond resistance in cracked concre	te C20/25						
Temperature range I: 43°C / 24°C 2)	$\tau_{Rk,cr}$	[N/mm ²]	5	3,5	2,5	2,5	2,5
Temperature range II: 65°C / 43°C 2)	$\tau_{Rk,cr}$	[N/mm ²]	4,5	3,5	2,5	2,5	2,5
Factor according to CEN/TS 1992-4-5: 6.2.2.3	k ₈	[-]	7,2				
		C30/37	1,0				
ncreasing factor for τ _{Rk,p} n non-cracked and cracked concrete	Ψ_{c}	C40/50	1,02				
		C50/60	1,04				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]	1,4				
Concrete cone failure	-						
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{cr}	[-]			7,2		
Factor according to CEN/TS 1992-4-5: 6.2.3.1	k _{ucr}	[-]	10,1				
Edge distance (splitting)	C _{cr,N}	[mm]			1,5x h _{ef}		
Center spacing (splitting)	s _{cr,N}	[mm]			3x h _{ef}		
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
Splitting failure							
Edge distance (splitting)	3)5) C _{cr,sp}	[mm]	$c_{cr,sp} = hef * \left(\frac{\tau_{k,ucr}}{8}\right)^{0,4} * \left(3,1-0,7\frac{h}{h_{ef}}\right)$				
Center spacing (splitting)	S _{cr,sp}	[mm]	2x c _{cr,sp}				
Installation safety factor	$\gamma_2 = \gamma_{inst}$	[-]			1,4		
In absence of other national regulations Maximum short and long term temperatures Ratio value $[h/h_{ef}] \le 2,4$		5) T _{k,ucr}	$\leq \frac{k_{ucr}}{3}$	$\sqrt{h_{ef*}}$ $\pi * d$	f _{ck}		

S&P - ResEP-16 Epoxy Injection System

Performances

Characteristic values of resistance to tension loads - Reinforcing bar Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009

Annex C3

Table C4: Characteristic values of resistance to shear loads. Design method TR 029 or CEN/TS 1992-4 S&P Reinforcing bar **ResEP-16 Epoxy Injection System** Ø12 Ø14 Ø16 Ø20 Ø25 Steel failure without lever arm⁵⁾ Characteristic resistance $V_{Rk,s}$ [kN] 31 42 55 86 135 B500B acc. DIN 488-2:2009-08 3) $\gamma_{Ms}^{(1)}$ Partial safety factor 1,5 [-] Steel failure with lever arm⁵⁾ Characteristic bending moment M⁰_{Rk,s} [Nm] 112 178 265 518 1012 B500B acc. DIN 488-2:2009-08 4) Partial safety factor γ_{Ms}¹⁾ 1,5 [-] Concrete pry-out failure Factor in equation (5.7) of TR 029 or k/k_3 [-] 2 in equation (27) to CEN/TS 1992-4-5 1,0 Installation safety factor $\gamma_2 = \gamma_{inst}$ [-1 Concrete edge failure $h_{ef}^{2)}$ Effectiv anchor length l_f [-] $d = d_{nom}$ Anchor diameter [-] 12 14 16 20 25 Installation safety factor 1.0 $\gamma_2 = \gamma_{inst}$ [-]

¹⁾ In absence of other national regulations

²⁾ CEN/TS 1992-4-5: $h_{ef} \le 8 d_{nom}$

³⁾ For reinforcing bars that do not comply with DIN 488: The characteristic resistance V_{Rk,s} shall be determined acc. Technical report TR 029, equation (5.5) or CEN/TS 1992-4-1, equation (B8).

⁴⁾ For reinforcing bars that do not comply with DIN 488: The characteristic bending moment M⁰_{Rk,s} shall be determined with: M⁰_{Rk,s} = 1,2 x W_{el} x f_{uk}

⁵⁾ Ductility factor according to CEN/TS 1992-4-5: 6.3.2.1: $k_2 = 1,0$

S&P - ResEP-16 Epoxy Injection System

Performances

Characteristic values of resistance to shear loads - Reinforcing bar Design method: EOTA TR 029:09/2010 or CEN/TS 1992-4-5:2009

Annex C4

Deutsches Institut für Bautechnik

S&P				Thi	readed	rod	
ResEP-16 Epoxy Injection System			M12	M16	M20	M24	M27
Non-cracked concrete							
	Temperati	ure range l: 43°C	; / 24°C ²⁾)			
Factor for displacement	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm²)]	0,020	0,030	0,010	0,010	0,030
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm²)]	0,024	0,040	0,040	0,044	0,064
	Temperatu	ire range II: 65°C	C / 43°C ²)			
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,020	0,030	0,010	0,012	0,03
	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,025	0,042	0,042	0,047	0,07
Cracked concrete							
	Temperati	ure range I: 43°C	; / 24°C ²⁾)			
Factor for displacement	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm ²)]	0,100	0,100	0,230	0,200	0,170
	δ _{N∞} -factor	[mm/(N/mm ²)]	0,133	0,180	0,270	0,300	0,30
	Temperatu	ure range II: 65°C	C / 43°C ²)			
Eactor for displacement	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm ²)]	0,100	0,130	0,230	0,200	0,170
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0.145	0,180	0,270	0,300	0,300

¹⁾ Calculation of the displacement:

 $\delta_{\mathsf{N}^{\infty}} = \delta_{\mathsf{N}^{\infty}} \text{-factor} \bullet \tau$

2)

Maximum short and long term temperatures

Table C6: Displacements under shear loads ³⁾

S&P	S&P				readed	rod	
ResEP-16 Epoxy Injection System				M16	M20	M24	M27
Factor for displacement	$\delta_{\text{V0}}\text{-factor}$	[mm/kN]	0,022	0,015	0,012	0,005	0,005
Pactor for displacement	$\delta_{V\infty}$ -factor	[mm/kN]	0,033	0,022	0,018	0,010	0,010
$\delta_{\vee 0} = \delta_{\vee 0}$ -factor • V $\delta_{\vee \infty} = \delta_{\vee \infty}$ -factor • V	V = action she	ear load					
P - ResEP-16 Epoxy Injection System							
						Annex	CE

S&P				Rein	forcing	j bar	
ResEP-16 Epoxy Injection System			Ø12	Ø14	Ø16	Ø20	Ø25
Non-cracked concrete							
	Temperat	ure range I: 43°C	/ 24°C ²⁾				
Eactor for displacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,015	0,030	0,040	0,043	0,055
Factor for displacement	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,033	0,056	0,063	0,071	0,090
	Temperati	ure range II: 65°C	; / 43°C ²⁾				
Factor for displacement	δ_{N0} -factor	[mm/(N/mm²)]	0,020	0,030	0,040	0,045	0,050
Factor for displacement	$\delta_{N^{\infty}}$ -factor	[mm/(N/mm²)]	0,036	0,060	0,066	0,077	0,100
Cracked concrete							
	Temperat	ure range I: 43°C	/ 24°C ²⁾				
Factor for displacement	$\delta_{\text{N0}}\text{-}\text{factor}$	[mm/(N/mm²)]	0,100	0,170	0,280	0,240	0,200
	δ _{N∞} -factor	[mm/(N/mm²)]	0,160	0,220	0,320	0,440	0,440
	Temperati	ure range II: 65°C	; / 43°C ²⁾				
Easter for displacement	$\delta_{\text{N0}}\text{-factor}$	[mm/(N/mm²)]	0,110	0,170	0,280	0,240	0,200
Factor for displacement	δ _{N∞} -factor	[mm/(N/mm ²)]	0,178	0,228	0,320	0,440	0,440

¹⁾ Calculation of the displacement:

 $\delta_{N^{\infty}} = \delta_{N^{\infty}}$ -factor • τ

2)

Maximum short and long term temperatures

Table C8: Displacements under shear loads ³⁾

S&P				Rein	forcing	bar	
ResEP-16 Epoxy Injection System				Ø14	Ø16	Ø20	Ø25
Factor for displacement	$\delta_{V0}\text{-}factor$	[mm/kN]	0,010	0,010	0,013	0,015	0,015
	$\delta_{V^{\infty}}\text{-}factor$	[mm/kN]	0,013	0,015	0,019	0,023	0,023

³⁾ Calculation of the displacement: $\delta_{V0} = \delta_{V0}$ -factor • V V = action shear load

 $\delta_{V^{\infty}} = \delta_{V^{\infty}}$ -factor • V

S&P - ResEP-16	Броху	Injection	System
----------------	-------	-----------	--------

Performances

Displacements - Reinforcing bar

Annex C6